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The numerical stability and truncation error of a family of differencing
schemes for viscoplastic constitutive relations in wavecodes is
invastigated. A von Neumann stability analysis is performed for a one-
dimensional model problem. This analysis identifies two differencing
meihods that have no restriction on the time step size beyond the usuai
Caourant-Friedrichs-Lewy condition. One of these methods is first-
order accurate, and the other is second-order accurate, Implementation
of one of these methods in the three-dimensional wavecode CTH is
discussed, € 1993 Academic Press. Inc.

L. INTRODUCTION

Viscoplastic models are finding increasing use in wave-
codes as analysts require improved accuracy in computing
the strengths of ductile metals under a wide range of
conditions of temperature and strain rate. Well-known
models for the viscoplastic response of metals include those
of Johnson and Cook [1], Zerilli and Armstrong [2],
Follansbee and co-workers [3], and Steinberg and
co-workers [4, 57].

Code developers attempting to install models of this type
in wavecodes have informally reported problems with
numerical instability. This was also the author's experience
when installing the Johnson—Cook and Zerilli-Armstrong
models in CTH [6], an Eulerian wavecode.

In order to investigate the source of this instability in a
simpler setting, the author wrote a small, one-dimensional
Lagrangian wavecode employing the Johnson-Cook model.
The differencing scheme was the method referred (o as
“backward-explicit”™ described in Section 2 of this paper.
Numerical noise occurred even in this simple Lagrangian
model, suggesting that the source of the problem was not
some feature of the Eulerian remap scheme in CTH. The
noisc remained even when a very small time step was used.

To gain a better understanding of why the noise occurred,
a von Neumann stability analysis was performed for a
family of differencing schemes. The analysis showed that the
backward-explicit method is unstable. However, it also
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showed that among this family of methods, two involved
no stability restriction on the time step beyond the
usual Courant—Friedrichs—Lewy (CFL) condition. These
methods are referred to below as the “backward-implicit”
and “three-point” methods. Although these approaches are
implicit, they do not require the solution of a large set of
linear equations, and they can be integrated into a
wavecode without undue difliculty. The purpose of this
paper is to report the results of this analysis und to describe
implementation of the backward-implicit approach in CTH.

2. DIFFERENTIAL EQUATIONS AND
DIFFERENCE FORMULAS

The system of partial differential equations to be analyzed
is a one-dimensional model of the dynamics of a homo-
geneous viscoplastic solid under conditions of uniaxial
strain. We start from the full three-dimensional sysiem
of equations and specialize it to uniaxial strain below.
In the following, x; is position, 7 is time, p is density, u, is
displacement, o, is the Cauchy stress tensor, and &, is the
linearized strain (ensor. Material isotropy and small dis-
placement gradients are assumed. The equation of motion
and the displacement-strain relation are

pry— (1)
(2)

ey =30+ u,),

where the notation for partial derivatives is (" )= a( )/d7 and
( ).;=( )/dx;. The deviatoric strain is

Cip= ey — 38,73,

i

(3)
where {2 is the dilatation,
(4)

3 =£kk'

Making the usual assumption for an elastic-plastic solid,
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the deviatoric strain rate tensor is decomposed into elastic
and plastic parts:

éy=e5+ 6%, (5)
The stress tensor is computed as
o, =k3,+ S, (6)

where & is the bulk modulus and S is the deviatoric stress
tensor, found from

Sy=2pél, (7)
where p is the shear modulus. Because of plastic flow, the
deviatoric stress tensor is constrained to lie within or on the
yield surface:

ISI=./5,S;</23 Y,

where Y is the yield stress. After yielding, the plastic part of
the strain rate tensor is determined by the flow rule

oo {0, ISI< 23 Y
iT\AS,  ISi=237,

where 1 is some nonnegative number. A must be non-
negative because plastic flow cannot occur in a direction
opposite to the stress tensor that induces it. The determina-
tion of the yield stress is discussed next.

For a viscoplastic solid we assume that the yield stress is
given by a function of the form

(8)

9)

Y= Y(T, ¢, &%), (10)

where 7T 1s the temperature and £P is the equivalent plastic
strain, defined through its time derivative by

ip— /2 5PgE
&= €€

(11)
For example, the Johnson—Cook model [1] has the form

Y = (A + BeP¥)(1 + C In(max(0.002, £°)))

x{1—0"), (12)
where 4, B, C, m, and N are positive constants, the units of
£?are s~ 1, and # is the homologous temperature, defined by

T-T,

f=— T
Tu—T.

(13)

in which T is room temperature and T, is the melting

r

temperature of the material.

581/104/1-3

We now specialize the above system of equations to the
case of uniaxial strain. We assume that

uy=u,(x,,1) Hy=ty;=0/0x,=8/0x;=0. (14)
The equation of motion (1) becomes
piy =011, (15)
It follows from (2) that
uy, 0 0
{e;1=1 0 0 0. (16)
0 0 0
From (16), (4), and (3),
2u, /3 0 0
[e;]1= 0 —u /3 0 (17}
0 0 —uy,/3
and
8=u1‘1. (18)
The deviatoric strain rate decomposition {5) implies
é,, =287, +é%,. (19)

From isotropy and the symmetry of the problem we see that
the most general form of the deviatoric stress tensor in

-umaxial strain is

S 0 0
[S;1=] 0 —=8,/2 0 (20)
0 0 ”S]]/z

From (6), (18}, and {20), the axial component of stress is
o =ku +8,,. {21)

Combining (8) with (20} results in the following condition:
—2Y/3< 8, €2Y/3. (22)

The flow rule (9), together with (22) and (7), results in the
specialized form of the constitutive law:

511=2Hé71, (23)
0, S0 ] <2¥)3

év =< (24
I {Asgn(su), S0l =273, )

where A is a nonnegative number.
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The viscoplastic constitutive model {10) is unchanged by
the assumption of uniaxial strain, However, under this
assumption {11) can be simplified as follows: Note that the
most general form of the plastic strain rate tensor is

és| 0 0
(e51=1 0 —é3,/2 0 (25)
o 0 — &8, /2
because this tensor is deviatoric, Hence (11) becomes
gP=¢P,. (26)

Our objective is to define a one-dimensional model
problem that will give insight into the stability issues that
would arise in a multidimensional wavecode. We assume
that a small displacement field w, is superposed on a
homogeneous, steady stretching deformation

wy(xy, t)=ax t+w(x;, ), (27)

where « is a small positive number and w, is a function such
that W, | < e This ensures that

é;, >0 (28)
We further assume that the body is yielded and in tension at
all times:

1 =2Y/3. (29)

This means that we do not need to worry about the absolute
value signs in (24).

It was assumed in the derivation of the partial differential
equations above that all displacement gradients are small.
Therefore no further lincarization of the kinematic equa-
tions or the equation of motion is necessary. However, it is
necessary to linearize the constitutive law.

The dependence of Y on its first and second arguments is
ignored in the following analysis, because in practice Yisa
slowly varying function of these quantities and they have no
practical effect on numerical stability. We can linearize the
yield stress in the viscoplastic model {10) about the plastic
strain rate 2e/3, for if w, =0, then by (17), %, =22/3
everywhere. The linearization is

Y= ¥+ b(eh, —2u/3), (30)
where Y, and b are constants defined by
Y
Yo=Y(T, &%, 20/3), b=a—§3(T, e®, 22/3).  (31)

In defining difference equations for the model problem,
the objective is to emulate the way a typical multidimen-
sional wavecode would work. Thercfore we ignore the
obvious simplifications that could be made in the system of
differential equations for the model problem prior to writing
the difference equations.

We first summarize the field equations to be differenced.
The following substitutions are made in order to simplify
the notation:

X=X, u=u,,

w=w,, =0y,

(32)
— — pt j—
e=e, e =e9,, eP=ef .

Also, the notation ( ), = &( )/dx will be used. Using (27), the
equation of motion (15) is

pi =0 (33)
From (21), (27), and (29),
o=k(ot+w,)+2Y/3. (34)
From (17) and (27),
é=3{a+w,) (35)
From (19),
=+ é". (36)
From (29) and (23),
é° = ¥/3u. (37)
From (30),
Y= Y,+ b(eP — 20/3). (38)

In the foliowing discussion, discretized quantities will be
represented in the form ¢; ., where j is the spatial index,
—¢0 < j< o0, and # is the time step index, 0 < n < a0. The
zone size 4x and time step length A are assumed to be
constant. The variables o, e, €f, and ¢° are zone-centecred
quantities, while w and its time derivatives are node-
centered. Differences will be abbreviated using the notation

(6:8)is t2n =S4 tn— Psin
(0x8)in=0is 120 —®i_1/2.m
(0:8)ns12=Prnsr1— Pin
(3.0);n=Fine12—Fin-1s2
(0:6:0);n=10,¢);0 41— {0, 0}in—1p2

= j,n+l_2¢j,n+¢j,nrl (39)
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and so on. The difference formula for the equation of motion
{33) is the following central difference formula:

p 1
2 (00,1);, === (8,0);.. (40)
For (34),
1
Gj+ if2Z.n =k| at + E {5r w),l'-!— /2,n
+2Y; 42403 (41)
For (35),
. 2
€ripnr1n =3y a+dldt(615.1‘“,}1“1/2,.'4-#1/2 . {42)
For (36),
éj+ 1/2n+ 12 = é§+ 12.m+ 142 + é;r"+ 12,0 4+ 1720 {43)
For (37),
v 1
iyt 12 ™ M G284 FFRY- Sy (44)

For (38}, difference formulas of two general forms wiil be
considered. The first is

2ba
Yicizn= Yo-“3_+be})+ /2.0~ D?

(43)
where D) is either an integer or a half-integer. Since strain
rates are centered at half-integer time steps, if D is an integer
the above difference formula is defined to mean

2ba
Y'+ y2,n= Yo——

4 3
+ i‘ (é,P+ 1/2,n— B+ 12 + éfP+ 1/2,n— 0 — 1{2)- (46)

If D=3, the difference formula (45) will be referred to as
backward-explicit, simce Y, ,,, , depends only on quantities
known from the two previous time steps.

If D=1, the difference formula will be cailed backward-
implicit. It is implicit because in time step n, é0, ., In
(45), unlike é; | 13 , . 1,2, cannot be determined immediately
from the known velocities s, . It is backward in the
sense that the right side of (45) is located in time one half
time step behind the left side.

If D=0, the ditference formula (46} wili be called
centered-implicit, because it involves unknown velocities,

and because the left and right sides of the equation are
located at the same time steps.

By writing out the first few terms of the appropriate
Taylor expansion, one finds that all the backward difference
operators (D >(Q) discussed above for approximating é°
have truncation error O(d4r), while the central difference
operator (D =0) has error ((4:?). It will emerge that the
D=0 methed is unusable for reasons of numerical
instability. This motivates a search for a stable differencing
scheme for the plastic strain rate that retains the O(4r?)
properties of the D=0 method. A suitable approach is the
following three-point method for evaluating the plastic
strain rate:

2ba
Yj+1fz.n = YO_T

+“?: (3€%, 1pn_1p— € s vjpn_ap) (47}

A Taylor expansion of this difference formula confirms that
the truncation error is O(41?) as desired. Tt will be shown
below that this method has no stability restriction beyond
the CFL limit.

3. STABILITY AND ACCURACY ANALYSIS

In this section we simplify the system of difference
equations (40)-(44) using the formulas (45), (46), and (47)
to evaluate the rate-dependent vield stress. We consider first
the formula for half-integer D, (45). We seek a single
difference equation involving w only. After some lengthy
algebraic manipulations, the details of which are given in
[71, one arrives at the difference equation

[(élarw)j.n - Ci(éxéxw)j.n]
+ R[(aférérw)j‘n—ﬂ - Cz'(&:axéxw)j.n—f)]
=0, DeZ,, (48)

where 2, is the set of half-integers, and the Courant num-
bers corresponding to the bulk wave speed and dilatational
wave speed are defined respectively by

C,=./k Ai*/p A3,

Cy= /U +4u/3) Ar%jp Ax°. (49)
The dimensionless constant R is defined by
b
= _—3:1 TS (50)

Equation (48) is a difference equation that involves only w
and which is equivalent to the original system of difference
equations for the model problem.
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Repeating the simplification using the difference formula
for integer D, (46), leads to the simplified difference
equation

[(Jx(srw)j.n - Cg(axéxw]j‘n]

R
+E [(8,88,W)in_pern— Ci0,8.0.W)_piinl

R
+ 5 [(6,06,W); p_1p— C?{(araxéxw)j,n—o- /2]

=0, DeZ, (31)
where 2 is the set of integers.
Repeating the process for the three-point method (47)

results in the following simplified difference equation for w:
L(8:8,W);,— C3{8,8,w);,]

3R
+ 7 [{6,9,8, Whine 12— C;’(éréxéx W)j,n— 1/2]

R
- E [(5=‘5;5rw)j,n—3:z - Ci’(éléxéxw)j.n—l;’z] =0.
(52)

A few observations about these simplified difference
equations are of interest:

1. Thecase R=10, i.e, b=0, corresponds to constant Y.
In this case the difference equations reduce to the
appropriate equation for the wave equation with the wave
velocity equal to the bulk wave speed.

2. The case R— o0, ie, b— oo, corresponds to an
elastic material. This 1s because according to (45) or its
analogues an infinitely large value of b forces é° to be zero;
hence all the strain is elastic. In this case the difference
equations reduce to the appropriate difference equation for
the wave equation with the wave velocity egual to the
dilatational wave speed.

3. C,<C, because of (49), and because u >0 for all
reasonable materials.

4. The case C, = C, would correspond physically to a
metal near its melting point, at which g~ 0. It would also
correspond to rubbery materials,

5. If in the difference equations we set C,=0 and
replace C; by the Courant number for shear waves,
C,=./u Ar*/p Ax?, then the result gives the difference
equations for shear waves. This may be shown by setting
k=01n (34).

6. The stability of the difference equations can only
depend on C,, C,, and R; R is the only one of these con-
stants that involves the viscoplastic parameter . Note from
(50) that R involves At but not 4x. Since as a minimum we

D=3r2 D=1 lhree'-po'lm
' n+Z n+2
— L n+i —'L‘— nel
wJ—n —ﬂ—é—[}—— n
1= ad {a}— o1
n-2 - n-z
n-3 — n-3 —4 n-3
P I I TR I I L v e
D=1/2 D=0
—‘ n+2 — n+2
n+1 p—— n+1 = underlying methed
—r-G O
—ﬁﬂiir}_ " " » = strain rate differencing
——{® r—— n-1 ' n-1
n-2 r—-— n-2
a3 n-3
IR Y 10
FIG. 1. Finite difference molecules for the difference equations. The

“underlying method™ refers to explicit central differencing of the wave
equation.

peed a method that is stable when b and A1 are arbitrarily
small, a useful numerical method cannot have any stability
restriction on R Some restriction on C,; or €, in addition
to the usual condition C,< 1, might be acceptable.

Finite difference molecules for the difference equations are
shown in Fig. 1, .

We now turn to an analysis of the accuracy of the
methods. By elementary manipulations similar to those
used to simphify the difference relations above, the system of
partial differential equations {33)-{38) may be simplified to

(W - Ciwxx) + r(w - sziwxx) = 03

(53}

where

cy=+'kip,  cy=/(k+4au/3)p. (54)

¥ =

5}:’

By writing out a few terms of the Taylor expansions for
various difference operators, one finds

8.0,w), .
%: W(X_’,‘, [") —+ O(Afz)
8.0,.w),,
LTYZL*_ — Wxx(xjs tn) -+ O(AxZ]
8,8,d,w),
g;%&ﬂ:w(xj’ )+ 0(de) for D>0
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§_ (515r51w)j.n7 1/2 _l (5:5.«5:“’);,»—3/2
2 Ar? 2 4

= ﬁ:‘(xj& tn) + O(Atz)

(5r5x6xw)j.n70
At Ax?

=W, (x;, 1,} 4+ O(41) + 0(4x*) for D=0
(6r5x6xw)j‘n
At Ax?
=W (x;, 1,) + O(d1*) + O{4x?)
E(éraxaxx jon—1/2 __l (6.'5x6,v1v)j.n—3,’2
2 At Ax? 2 A1'4x?
=W, X, t,,)+0(.dt2)+O(Ax2). (55)

Now observe that the difference equation for half-integer D,
{48), may be written as

c
A2 b Ax?

[(Srérw}j,n a2 (éxéxw)j,ﬂ:l

=().

_'_ r [(51'615”“);.:1;0 _ 6'2 (‘Slaxé.rw)j‘n})} (56)

48 @ At Ax?

Substituting the appropriate operators with hall-integer D
from {55) into (56) and rearranging yields

(W~ ew o) + 1 — e, ) = O(d1) + O(dx?).  (57)

Therefore all the methods with half-integer I} have error

O{A0) + O(4x?).

Proceeding similarly for the methods with integer D> 0,
one finds that the error is also O{4¢) 4+ O(4x?). However,
for D=0, and for the three-point method, the error is
0413+ 0(ax?). The above results are summarized in
Table L

We now investigate the numerical stability of the dif-
ference formulas (48), (51), and (52). Following the usual

TABLEI

Truncation Error and Region of Stability (Z<1) for Some
Differencing Schemes

Method Error Region of stability

D =0 {centered-implicit) AR AxY) @&

D= /2 (backward-implicit) (4, 4x*} 0€C,<€1,0€C,<C,
D=1 04, 4x%)  0<C,<1//2,0<C, ¢,
D =32 (backward-explicit) O(4t, Ax?) &

Three-point o142 43 0<C,<1,0€C,5C

procedure for a von Neumann stability analysis [8], we
assume that for any j and #,

wj.nzcneiﬁe (58)
where { Is a possibly complex constant called the amplifica-
tion factor, y is a positive constant, i = ./ — 1, and the super-
scripts indicate powers. We require |{| <1 for numerical
stability for all vaiues of y.

The remainder of the analysis is concerned with
evaluating { from the difference formulas. We start with
(48). Substituting (58) into (48) and using the identity
cos 8 = (exp(if} + exp{ —if) )2, we find that for half-
integer D,

(((—1)"=2C3(cos y— 1) {J+ RC212(L— 1)

x [({ —1)2=2C%(cos y — 1){] =0. (59)
Similarly, for integer D, (51) yields
(=1 —2C5(cos y—1){]
+5 0P D)
x[((—1)2=2C2(cosy— 1){]=0. (60}
For the three-point method, (52) leads to
[({—1)*~2C(cos y— 1)1
+R a0
X[~ 1) =2C3(cosy—1){1=0.  (61)

For the methods of interest, {59), (60), and (61) yield a
polynomial in { of degree L with L =3 or L = 4. Denote the
roots of the polynomial by

C](Cd’ C.‘n '}’7 R)s ey gl_.(cd’ C.FJ: '})’ R} (62)
Let a function Z be defined by
Z(C,, Cp) = max (IE(C s Chypy RY|). (63)
DLy, R20,1 7 L

Recall that for numerical stability we require |{} < 1 for all
choices of the constants v and R in these equations. There-
fore the method is stable in this sense for a given pair of
Courant numbers C,, C, if Z{C,, C,)< 1 and unstable
otherwise.

It is easy to evalwate Z(C,, C,) approximately by
sampling large numbers of choices of y and R and using
standard formulas for the exact roots of cubic and quartic
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polynomials. By carrying out this procedure for many
choices of C, and C,, it is also straightforward to demon-
strate what choices of these variables, if any, assure
numerical stability.

This procedure was carried out for the three-point
method and for the following choices of D: 3, 1, 1, and 0.
The results are summarized in Table I. The notation &F for
the region of stability indicates unconditional instability.

Note that the condition 0< C, < €, is automatically
satisfied for all real materials because 12 0 (see (49)). Also
note that the stability conditions for the D = § (backward-
implicit) and three-point methods are simply the usual CFL
condition.

A small Lagrangian wavecode was written to demon-
strate the backward-implicit and three-point methods for
the model problem described above. There were 100 nodes.
The boundary condition was a step function for w on the left
boundary. The parameters were as foillows:

(jd==(l9
C,=0.7868
k=1
=04615
K (64)
I’O = 1
p=1
=1
b=03.
vYELQCITY
0.01 .
L .
i i
2| ]
T ]
i —— THREE-POINT 1
- —-BACKWARD-IMFLICIT
0 e
o 1
X

FIG. 2. Velocity as a function of distance in the example problem.

STRESS
0637 T T T T T T T L T

—=— THREE+~FDINT
~-=BACKWARD-INPLICIT

FIG. 3. Stress as a function of distance in the example problem,

Figure 2 shows the velocity w as a function of x after the
wave has propagated most of the distance through the
mesh. The solid line is for the three-point method. and the
dashed line 1s for the backward-implicit method. The rate-
dependence of the constitutive model clearly causes rapid
decay of the shock wave. Figure 3 shows the stress ¢ as a
function of x, and Fig. 4 shows the plastic strain rate.

PLASTIC STRAIN RATE

%
= 1
| — THREE-POINT 1
- - BACKNARD-I1MPLICIT
—-0.003 I I T a i L
o 1
X

F1G. 4. Plastic strain rate as a function of distance in the ¢xample
problem.
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4. GENERALIZATION TO MULTIPLE
DIMENSIONS

Of the methods investigated, only the backward-implicit
and the three-point methods had no restriction on the time
step size beyond the usual CFL condition. Of these, the
three-point method had better truncation error. However,
the three-point method requires additional data to be
stored, since in practice the plastic strain rate term is
evaluated from

PN L
AR sr— 172 2 Jon—372

P
ej,n—2

P __oP P
_3ej.n ej,n—l lej,nfl

2 At 2 At

1

=— LR Vo1
s (3ej de

W Jn-—

1+ejl'?n—2)‘ (65)

Therefore the plastic strains from two previous time steps
must be retained, while the backward-implicit method
requires the data from only ore previous time step.

In large three-dimensional calculations, even with
modern computers, the need for memory for an additional
array dimensioned to the size of the mesh can represent a
significant burden, and one would like to avoid adding such
an array if possible. In order to gain some insight into the
trade-off between improved accuracy and the need for an
extra array, a series of test problems was run with both
methods. The problems included both coarse and fine
meshes and focused mainly on shock wave propagation.
These tests showed virtually no difference in the results
with the two methods. Therefore the backward-implicit
method appears to be adequate for general-purpose multi-
dimensional wavecodes, and this method was the one
implemented in CTH.

As Table I shows, the D = | method is stable over a useful
region, but its stability condition is more restrictive than
that of the backward-implicit and three-point methods. The
D=1 method appears to have no advantages, and it was
not pursued further. The remainder of this section concerns
the implementation of the backward-implicit differencing
scheme in CTH,

The generalization of (45) with D=1 to multiple dimen-
sions and to nonlinear constitutive relations is found from
(10) with the appropriate difference formula for plastic
strain rate,

P — P
& jin— &

r',j,k,n—l), (66)

— p
Yi.j.k.n_ Y(Ti.f,ksﬂfl’ef,j.k,nfl’ A
a1

where i, §, k identify an Eulerian three-dimensional cell. The

quantity T ;. ., appears instead of T, , , , in (66) because

the architecture of CTH is such that T, ;, , is not known at
the point in the computational sequence where Y, ;, , is
evaluated. The second argument of ¥ is also evaluated at
time step #n — 1 because in practice strain hardening causes
such a slowly varying dependence of Y on &F that a more
accurate evaluation of this term would not result in a
significant improvement in accuracy, although it wouid
considerably complicate the calculations.

In the remainder of this discussion, the cell indices will be
omitted, since there is only one cell involved. Also, we will
use the following less cumbersome notation: A¢, = (4,¢),,
44, . 172= (0,8 172

Since &2 depends on Y,, the difference formula in (66)
gives Y, only implicitly.

Let de,_,,, be the total deviatoric strain increment
tensor for a cell. Let 8, _, be the old deviatoric stress tensor.
Both de,_,, and S, ; are known at the point in the
compulational sequence at which ¥, is to be evaluated.

In order to avoid elaborate tensor computations, we
would like to recast the problem in such a way that only
scalars are involved. To do this, we proceed as follows. First,
we write the flow rule for yielded material (9) as

6P =¢P § (67)
where ¢P = |éP| and
S=181=./5,S,. (68)
Now define a scalar é by
é-S
i 69
b= (69)

Combining this with (67) the decomposition (5) results in

é=¢%+¢éP, (70)
where
é-S
3¢ = . T
== (1)
Differentiating (68) with respect to time gives
. §.8
S=— 72
S (72)

A generalization of (7) to large deformation gradients is

o1 _
=0 ($+SW—WS), (73)
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where W is the spin tensor, defined by

W= 1{Vyv—(Vv)T), {(74)

where v is the Eulerian velocity vector field. The term in
parentheses in {73) is the Jaumann stress rate. The terms
involving spmn arise because rigid rotations at a point in a
body cause a change in the stress tensor even though they
do not affect the strain rate. See Ref, [9] for a discussion of
the Jaumann stress rate. Substituting (73) into (71) and
making use of (72) yields

§=2uét. (75)

Note that the spin terms have dropped out of {75). This is
because the following identity holds for any symmetric
tensor § and any tensor W:

(SW —WS).§ =0, (76)

The proof of this is easily performed using index notation.
Geometrically, (76) simply means that the spin terms in the
stress rate are parallel to the yield surface.

In the numerical method it is more convenient to use
strain increments than strain rates. Define the total
deviatoric strain increment by

de, 1n=¢,_p AL (77)

with other incremental quantities derived similarly in terms
of rates. Equation (69} is replaced by

de,_12-8,_4

Aen—],‘2= S

(78)

n—1

Note that 4e, _,, can be evaluated immediately in time step
n. Equation (70) is replaced by

Aen_1/2=Aef,_l/2+Ae§_1/2. (79)
Equation (75) is replaced by
S,—5,_
A‘-’fu—uz:_ﬂ_l- (80)

If at the end of time step # the material is yielded, it follows
from (8} and (80) that

ot J2B3Y, S, |

% . (81)

The increment of equivalent plastic strain is found from (11)
and (67} to be

485—1/2=\/§Aeg—1/2- (82)
The yield stress is computed from (66) and (82) as
2 Ae®
Yn—Y(Tn—]-:EE_la 7M - (83)
341,

The three equations (79), {81), and (83) form a nonlinear
algebraic system in which the unknowns are dej_,,
Aef 5, and Y, The solution of this system is readily found
by Newton’s method.

In practice, there are certain cases in which the method
described in this section fails to give a meaningful value of
Y,. These cases most frequently arise under the following
conditions:

« An Eulerian ceil is not filled with a single material. In
this case the values of node velocity, which are used in
finding the strain rates, are unreliable because they may
refer to void or to a different material.

+ Numerical noise causes the arguments of the function Y
to be out of the range of validity of the constitutive model.

When either of these conditions is detected, some special
procedure must be used to find a reasonable value for Y.
Often it is possible to omit the rate-dependent terms in Y,
retaining the dependence on equivalent piastic strain and
temperature. In metals, ¥ is a slowly varying function of
these quantities, so the omission of the rate-dependent
terms is a reliable way to obtain meaningful values of yield
stress when either of the two conditions listed above holds.

Once Y, is known, the deviatoric stress tensor in a cell is
evaluated according to the method introduced by Wilkins
[10]. The method is applied as though the yield stress were
a constant. This method is summarized here for com-
pleteness.

First, an “elastic estimate™ S8 of the new deviatoric stress
tensor is obtained based on the assumption that the
material is elastic during the incremental deformation that
occurred during the time step. Differencing (73), we obtain

S;=Snﬁ1+2}i Aeﬁ71/2+dtn~1/2

X (Wn—lfzsff—1/2‘S:—Uzwn—uz), (84)

where

S;—1/2=%(SH—I+S:‘) (85)
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and W is the spin tensor, defined in (74). In muiti-
dimensional calculations, finding S requires solving a non-
homogenecous linear algebraic system of equations derived
from (84) and (85).

The next step is to {ind §,, the new deviataric stress
tensor. The cases of non-yielded and yielded 8¢ are treated
as follows:

S E{sz, 1S¢] < /2/3 Y,
"TAB SIS IS5 = (2B Y,

Geometrically, the second of (86) represents “putting the
stress state back on the yield surface.” This method of com-
puting the deviatoric stress ensures that any stress state lies
within or on the yield surface, and it correctly accounts for
the elastic straining and rigid rotation.

The only computation left to perform in time step n is to
find the new value of ¢P. We can do this without involving
the spin terms. By taking the tensor dot product of both
sides of (67) with §/S and by using (73), (5), and (76),

(86)

S
5P — b,
£ ' S
)
_{eﬁe).S
B 1 S
={é—— (S+8W-— st
I‘e 2Ju( +SW WS)] S
—Fé-S—L(S+SW—WS) s]i
L 2u A
. $ 1
_Le—S—EE,S]E
. $71s
le~=21f.2. 7
ik ®
The differenced form of this is
Asn—~1/2] Sn—l,n‘Z
AeP_ o= e, n— - \ 88
B
where
Asnfljlr‘snksnfl (89)
S,+S,_
8, 1p= (90)

At this point in the calculation, 8, is known, so the indicated
quantities can be computed immediately. Finally, the new

value of equivalent plastic strain is found from the above
and from numerical integration of (11}:
55=52—1+\/§A‘-’E—1u- (91)
Although it would be possible in many cases to use the value
of d4ef _ |, from (82 to integrate equivalent plastic strain,
the method described here is more general because of the
special cases in which a rate-dependent calculation is
impossible, as discussed above. In these special cases (82)
does not give meaningful values of 4ef,_ | ,, but it is usually
still possible to find a useful approximate value of ¥,
Therefore {91) remains useful in these special cases.

5. CONCLUSIONS

The results described in this paper provide an analysis of
the stability and accuracy of a family of differencing
methods for the rate-dependent term in  viscoplastic
constitutive laws. As shown in Table I, the different methods
within this family vary in their accuracy and ranges of
stability.

Two differencing schemes usable in wavecodes have been
identified and tested. These methods are the backward-
implicit scheme, which is first-order accurate, and the three-
point scheme, which is second-order accurate, The latter
requires more storage than the former and, in practice, its
improved accuracy does not appear to be required for a
general-purpose wavecode.

The backward-implicit scheme has been implemented in
CTH, a three-dimensional Eulerian wavecode. For each

-cell, an iteration is required to evaluate the current yield

stress in each cycle. In typical CTH calculations using the
Johnson-Cook or Zerilli-Armstrong models, this iteration
adds about 4% to the computer time. However, because no
interaction between cells occurs in the formulation of the
constitutive law, there is no need to solve a large set of linear
equations in each time step as would be necessary in an
implicit code. In this sense the backward-implicit or
three-point schemes can be integrated easily into a typical
wavecode.

For use in wavecodes, the ideal differencing scheme for
the rate-dependent term would be fully explicit, i.e., it would
allow the yield stress to be computed immediately from
known data without any iteration. No such fully explicit
scheme that is numerically stable has been identified in this
study. However, since the family of methods considered here
is not exhaustive, it is possible that such a method exists.
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